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Relevant sections of the textbook

• Chapter 3

• Chapter 5



Recall: Compositionality of functions
For any set X , we can define a function id : X → X by letting id(x) to be the
same as x . This function is called the identity function on X .

More interestingly, let f : X → Y and g : Y → Z be functions. We can define
a new function k : X → Z by letting

k (x) =def g(f (x))

The function k is called the composition of f and g which we also call “f
composed with g” (or “g after f ”) and which we denote by g ◦ f .
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λy .g(y ) ◦ λx .f (x) = λx .g [f (x)/y ]

λy .log2y ◦ λx .2x = λx .log2y [2x/y ] = log22x = x



The composition of function introduced above has two important
properties:

unitality for any function f : X → Y , we have f ◦ idX = f and idY ◦f = f .
associativity for any functions f : W → X , g : X → Y and h : Y → Z , we have

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .



For any function f : X → Y , we define as subset of X × Y known as the
graph of f .

Gr(f ) = {(x , y ) | f (x) = y}

Define functions h, i , and p as follows:

h = λx .(x , f (x)) (1)

i = λ(x , y ).(x , y ) (2)

p = λ(x , y ).y (3)

Exercise
Show that the functions f , h, i , and p fit into the following square of sets and
functions commutes:

Gr(f ) X × Y
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Composition of relations

Given a relation R on X and Y and a relation S on Y and Z we can
compose them to get a relation S ◦ R on X and Z defined as follows:

x(S ◦ R)z ⇐⇒ ∃y ∈ Y (xRy ∧ yRz)

Exercise
Let B be the “brothership” relation (xBy means x is a brother of y) and S be
the “sistership” relation. Show that the composite relation S ◦ B is not
equivalent to B.

Exercise
• Prove that if both R and S are partial orders then S ◦ R is a partial order.

• Prove that if both R and S are equivalence relations then S ◦ R is an
equivalence relation.



Exercise
Show that for any equivalence relation R on a set X we have

1 R ◦ R = R.

2 R ◦ R ◦ ... ◦ R = R



Composition of functions from compositions of relations

Theorem
Suppose f : X → Y and g : Y → Z are functions. Consider the
corresponding relations Rf and Rg. The relation corresponding to the
composite function g ◦ f is equivalent to the composite relations Rg ◦ Rf , that
is,

∀x ∈ X∀z ∈ Z
(
x Rg◦f z ⇐⇒ x (Rg ◦ Rf ) z

)



Isomorphisms of sets

Definition
An isomorphism between two sets X and Y is a pair of function

f : X → Y and g : Y → X

such that g ◦ f = idX , and f ◦ g = idY .

We can think of functions f and g above as no data-loss “processes”, e.g.
conversion of files to different format without data being lost.

Definition
The sets X and Y are said to be isomorphic in case there exists an
isomorphism between them. In this case, we use the notation X ∼= Y.



Exercise
Show that for any set A, it is isomorphic to ∅ if and only if A does not have
any elements. Can you prove this without the LEM?



Previously, we defined the cartesian product A × B of two sets A and B to
consists of all the pairs (a, b) where a ∈ A and b ∈ B. Now, we show that if
we have more two sets the order of forming products does not matter.

Exercise
1 For all sets A, B, C we have

(A × B) × C ∼= (A × B) × C

For this reason, we use A × B × C to denote either sets.



Exercise
Show that two finite sets are isomorphic if and only if they have the same
number of elements.



Exercise
Show that for any function f : X → Y, we have

Gr(f ) ∼= X .



A remark on disjoint unions

We introduced the operation of taking disjoint union of two sets as follows:

A ⊔ B = {inl(x) | x ∈ A} ∪ {inr(x) | x ∈ B}

Exercise
Show that

A ⊔ B ∼= ({0} × A) ∪ ({1} × B)

Inspired by this fact we define the disjoint union of a family {Ai | i ∈ I} of sets
to be ⊔

i∈I

Ai =
⋃
i∈I

{i} × Ai .

An element of
⊔
i∈I

Ai is a pair (i , a) where i ∈ I and a ∈ Ai .



Inverse of a relation

We can always define an inverse to a relation:

Definition
For a relation R on X and Y we define the inverse of R to be a relation R−1

on Y and X defined by
yR−1x ⇔ xRy

Exercise
Show that if a relation R is functional then it is not necessarily the case that
R−1 is functional.



Arithmetic of sets

We define the operation of addition on sets as follows: For sets X and Y let
the sum X + Y be defined by their disjoint union X ⊔ Y .

Exercise
1 Show that the addition operation on sets is both commutative and

associative.

2 Show that the empty set is the unit (aka neutral element) of addition of
sets.

Exercise
Show that m + n ∼= m + n for all natural numbers m and n.



Exercise
1 Show that if S and S′ are isomorphic, then for all sets X, we have

X + S ∼= X + S′.

2 Prove that for any singleton S, we have N + S ∼= N.

Sometimes, when the context precludes risk of confusion, we use the
notation 1 for any singleton set. Therefore, we can simplify the last
statement in above to

N + 1 ∼= N.



Definition
• A retract (aka left inverse) of function f : A → B is a morphism r : B → A

such that r ◦ f = idA. In this case we also say A is a retract of B.

• A section (aka right inverse) of function f : A → B is a morphism
s : B → A such that f ◦ s = idB.
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Example
• The circle is a retract of punctured disk.

• The maps from the infinite helix to the circle has a section, but no
continuous section.



Injections

Definition
A function f : X → Y is injective (or one-to-one) if

∀a, b ∈ X
(
f (a) = f (b) ⇒ a = b

)
An injective function is said to be an injection.



Surjections

Definition
A function f : X → Y is surjective (aka onto) if

∀y ∈ Y , ∃x ∈ X , f (x) = y

holds. A surjective function is said to be a surjection.



Proposition
1 A function with a retract is injective.

2 A function with a section is surjective.



Injection and retracts

Does every injection have a retract?



Injection and retracts

No. Consider the function ∅ → 1.



Injection and retracts

Proposition
Let f : X → Y be a function. If f is injective and X is inhabited, then f has a
retract.



Injection and retracts
Proof.
Suppose that f is injective and X is inhabited. Since X is inhabited, we get
always fix an element of it, say x0 ∈ X . Now, define r : Y → X as follows.

r (y ) =

x if y = f (x) for some x ∈ X

x0 otherwise

Note that r is well-defined since if for some y , the there are elements x and
x ′ such that y = f (x) = f (x ′), then, by injectivity of f , we have x = x ′, and
therefore, the value of r is uniquely determined.
To see that r is a retract of f , let x ∈ X . Letting y = f (x), we see that y falls
into the first case in the specification of r , so that r (f (x)) = g(y ) = a for some
a ∈ X for which y = f (a). But, f (x) = y = f (a), and by injectivity of f we have
x = a. Therefore, for every x ∈ X ,

r (f (x)) = x = idX (x) .

By function extensionality, r ◦ f = idX .



Injection and retracts

Was this proof constructive?



Questions

Time for your questions!


