MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour
Johns Hopkins University
Fall 2021

Relevant sections of the textbook

- Chapter 3
- Chapter 5

Recall: Compositionality of functions

For any set X, we can define a function id: $X \rightarrow X$ by letting id (x) to be the same as x. This function is called the identity function on X.

More interestingly, let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. We can define a new function $k: X \rightarrow Z$ by letting

$$
k(x)=\operatorname{def} g(f(x))
$$

The function k is called the composition of f and g which we also call " f composed with g " (or " g after f ") and which we denote by $g \circ f$.

$$
\lambda y \cdot g(y) \circ \lambda x \cdot f(x)=\lambda x \cdot g[f(x) / y]
$$

$\lambda y \cdot \log _{2} y \circ \lambda x \cdot 2^{x}=\lambda x \cdot \log _{2} y\left[2^{x} / y\right]=\log _{2} 2^{x}=x$

The composition of function introduced above has two important properties:
unitality for any function $f: X \rightarrow Y$, we have $f \circ \mathrm{id}_{X}=f$ and $\mathrm{id}_{Y} \circ f=f$. associativity for any functions $f: W \rightarrow X, g: X \rightarrow Y$ and $h: Y \rightarrow Z$, we have

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

For any function $f: X \rightarrow Y$, we define as subset of $X \times Y$ known as the graph of f.

$$
\operatorname{Gr}(f)=\{(x, y) \mid f(x)=y\}
$$

Define functions h, i, and p as follows:

$$
\begin{array}{r}
h=\lambda x \cdot(x, f(x)) \\
i=\lambda(x, y) \cdot(x, y) \\
p=\lambda(x, y) \cdot y \tag{3}
\end{array}
$$

Exercise

Show that the functions f, h, i, and p fit into the following square of sets and functions commutes:

Composition of relations

Given a relation R on X and Y and a relation S on Y and Z we can compose them to get a relation $S \circ R$ on X and Z defined as follows:

$$
x(S \circ R) z \Longleftrightarrow \exists y \in Y(x R y \wedge y R z)
$$

Exercise

Let B be the "brothership" relation (xBy means x is a brother of y) and S be the "sistership" relation. Show that the composite relation $S \circ B$ is not equivalent to B.

Exercise

- Prove that if both R and S are partial orders then $S \circ R$ is a partial order.
- Prove that if both R and S are equivalence relations then $S \circ R$ is an equivalence relation.

Exercise

Show that for any equivalence relation R on a set X we have
(1) $R \circ R=R$.
(2) $R \circ R \circ \ldots \circ R=R$

Composition of functions from compositions of relations

Theorem

Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions. Consider the corresponding relations R_{f} and R_{g}. The relation corresponding to the composite function $g \circ f$ is equivalent to the composite relations $R_{g} \circ R_{f}$, that is,

$$
\forall x \in X \forall z \in Z\left(x R_{g \circ f} z \Longleftrightarrow x\left(R_{g} \circ R_{f}\right) z\right)
$$

Isomorphisms of sets

Definition

An isomorphism between two sets X and Y is a pair of function

$$
f: X \rightarrow Y \text { and } g: Y \rightarrow X
$$

such that $g \circ f=\mathrm{id}_{X}$, and $f \circ g=\mathrm{id}_{Y}$.
We can think of functions f and g above as no data-loss "processes", e.g. conversion of files to different format without data being lost.

Definition

The sets X and Y are said to be isomorphic in case there exists an isomorphism between them. In this case, we use the notation $X \cong Y$.

Exercise

Show that for any set A, it is isomorphic to \emptyset if and only if A does not have any elements. Can you prove this without the LEM?

Previously, we defined the cartesian product $A \times B$ of two sets A and B to consists of all the pairs (a, b) where $a \in A$ and $b \in B$. Now, we show that if we have more two sets the order of forming products does not matter.

Exercise
(1) For all sets A, B, C we have

$$
(A \times B) \times C \cong(A \times B) \times C
$$

For this reason, we use $A \times B \times C$ to denote either sets.

Exercise

Show that two finite sets are isomorphic if and only if they have the same number of elements.

Exercise
Show that for any function $f: X \rightarrow Y$, we have

$$
\operatorname{Gr}(f) \cong X .
$$

A remark on disjoint unions

We introduced the operation of taking disjoint union of two sets as follows:

$$
A \sqcup B=\{\operatorname{inl}(x) \mid x \in A\} \cup\{\operatorname{inr}(x) \mid x \in B\}
$$

Exercise

Show that

$$
A \sqcup B \cong(\{0\} \times A) \cup(\{1\} \times B)
$$

Inspired by this fact we define the disjoint union of a family $\left\{A_{i} \mid i \in I\right\}$ of sets to be

$$
\bigsqcup_{i \in I} A_{i}=\bigcup_{i \in I}\{i\} \times A_{i} .
$$

An element of $\bigsqcup_{i \in I} A_{i}$ is a pair (i, a) where $i \in I$ and $a \in A_{i}$.

Inverse of a relation

We can always define an inverse to a relation:

Definition

For a relation R on X and Y we define the inverse of R to be a relation R^{-1} on Y and X defined by

$$
y R^{-1} x \Leftrightarrow x R y
$$

Exercise

Show that if a relation R is functional then it is not necessarily the case that R^{-1} is functional.

Arithmetic of sets

We define the operation of addition on sets as follows: For sets X and Y let the sum $X+Y$ be defined by their disjoint union $X \sqcup Y$.

Exercise

(1) Show that the addition operation on sets is both commutative and associative.
(2) Show that the empty set is the unit (aka neutral element) of addition of sets.

Exercise

Show that $\underline{m}+\underline{n} \cong m+n$ for all natural numbers m and n.

Exercise

(1) Show that if S and S^{\prime} are isomorphic, then for all sets X, we have $X+S \cong X+S^{\prime}$.
(2) Prove that for any singleton S, we have $\mathbb{N}+S \cong \mathbb{N}$.

Sometimes, when the context precludes risk of confusion, we use the notation 1 for any singleton set. Therefore, we can simplify the last statement in above to

$$
\mathbb{N}+1 \cong \mathbb{N}
$$

Definition

- A retract (aka left inverse) of function $f: A \rightarrow B$ is a morphism $r: B \rightarrow A$ such that $r \circ f=\mathrm{id}_{A}$. In this case we also say A is a retract of B.
- A section (aka right inverse) of function $f: A \rightarrow B$ is a morphism $s: B \rightarrow A$ such that $f \circ s=\mathrm{id}_{B}$.

Example

- The circle is a retract of punctured disk.
- The maps from the infinite helix to the circle has a section, but no continuous section.

Injections

Definition

A function $f: X \rightarrow Y$ is injective (or one-to-one) if

$$
\forall a, b \in X(f(a)=f(b) \Rightarrow a=b)
$$

An injective function is said to be an injection.

Surjections

Definition

A function $f: X \rightarrow Y$ is surjective (aka onto) if

$$
\forall y \in Y, \exists x \in X, f(x)=y
$$

holds. A surjective function is said to be a surjection.

Proposition

(1) A function with a retract is injective.
(2) A function with a section is surjective.

Injection and retracts

Does every injection have a retract?

Injection and retracts

No. Consider the function $\emptyset \rightarrow \mathbf{1}$.

Injection and retracts

Proposition

Let $f: X \rightarrow Y$ be a function. If f is injective and X is inhabited, then f has a retract.

Injection and retracts

Proof.

Suppose that f is injective and X is inhabited. Since X is inhabited, we get always fix an element of it, say $x_{0} \in X$. Now, define $r: Y \rightarrow X$ as follows.

$$
r(y)= \begin{cases}x & \text { if } y=f(x) \text { for some } x \in X \\ x_{0} & \text { otherwise }\end{cases}
$$

Note that r is well-defined since if for some y, the there are elements x and x^{\prime} such that $y=f(x)=f\left(x^{\prime}\right)$, then, by injectivity of f, we have $x=x^{\prime}$, and therefore, the value of r is uniquely determined.
To see that r is a retract of f, let $x \in X$. Letting $y=f(x)$, we see that y falls into the first case in the specification of r, so that $r(f(x))=g(y)=a$ for some $a \in X$ for which $y=f(a)$. But, $f(x)=y=f(a)$, and by injectivity of f we have $x=a$. Therefore, for every $x \in X$,

Injection and retracts

Was this proof constructive?

Questions

Time for your questions!

