MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour Johns Hopkins University Fall 2021 - Relations - Functions Relevant sections of the textbook

- Chapter 3
- Chapter 5

Recall: Compositionality of functions

For any set *X*, we can define a function id: $X \rightarrow X$ by letting id(*x*) to be the same as *x*. This function is called the identity function on *X*.

More interestingly, let $f: X \to Y$ and $g: Y \to Z$ be functions. We can define a new function $k: X \to Z$ by letting

 $k(x) =_{\mathsf{def}} g(f(x))$

The function *k* is called the composition of *f* and *g* which we also call "*f* composed with *g*" (or "*g* after *f*") and which we denote by $g \circ f$.

 $\lambda y.g(y) \circ \lambda x.f(x) = \lambda x.g[f(x)/y]$

$$\lambda y.log_2 y \circ \lambda x.2^x = \lambda x.log_2 y [2^x/y] = log_2 2^x = x$$

The composition of function introduced above has two important properties:

unitality for any function $f: X \to Y$, we have $f \circ id_X = f$ and $id_Y \circ f = f$. associativity for any functions $f: W \to X$, $g: X \to Y$ and $h: Y \to Z$, we have

 $h \circ (g \circ f) = (h \circ g) \circ f$.

For any function $f: X \to Y$, we define as subset of $X \times Y$ known as the graph of f.

$$\mathbf{Gr}(f) = \{(x, y) \mid f(x) = y\}$$

Define functions *h*, *i*, and *p* as follows:

$$h = \lambda x.(x, f(x)) \tag{1}$$

$$i = \lambda(x, y).(x, y)$$
⁽²⁾

$$\rho = \lambda(x, y).y \tag{3}$$

Exercise

Show that the functions f, h, i, and p fit into the following square of sets and functions commutes:

$$egin{array}{ccc} {\sf Gr}(f) & \stackrel{i}{\longrightarrow} & X imes Y \ & h \ \uparrow & & \downarrow^p \ & X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

Composition of relations

Given a relation R on X and Y and a relation S on Y and Z we can compose them to get a relation $S \circ R$ on X and Z defined as follows:

 $x(S \circ R)z \iff \exists y \in Y(xRy \land yRz)$

Exercise

Let B be the "brothership" relation (xBy means x is a brother of y) and S be the "sistership" relation. Show that the composite relation $S \circ B$ is not equivalent to B.

Exercise

- Prove that if both R and S are partial orders then $S \circ R$ is a partial order.
- Prove that if both *R* and *S* are equivalence relations then *S* ∘ *R* is an equivalence relation.

Exercise

Show that for any equivalence relation R on a set X we have

R ∘ *R* = *R*.
 R ∘ *R* ∘ ... ∘ *R* = *R*

Composition of functions from compositions of relations

Theorem

Suppose $f: X \to Y$ and $g: Y \to Z$ are functions. Consider the corresponding relations R_f and R_g . The relation corresponding to the composite function $g \circ f$ is equivalent to the composite relations $R_g \circ R_f$, that is,

$$\forall x \in X \forall z \in Z \left(x R_{g \circ f} z \iff x \left(R_g \circ R_f \right) z \right)$$

Isomorphisms of sets

Definition

An isomorphism between two sets X and Y is a pair of function

 $f: X \to Y$ and $g: Y \to X$

such that $g \circ f = id_X$, and $f \circ g = id_Y$.

We can think of functions f and g above as no data-loss "processes", e.g. conversion of files to different format without data being lost.

Definition

The sets X and Y are said to be isomorphic in case there exists an isomorphism between them. In this case, we use the notation $X \cong Y$.

Exercise

Show that for any set A, it is isomorphic to \emptyset if and only if A does not have any elements. Can you prove this without the LEM?

Previously, we defined the cartesian product $A \times B$ of two sets A and B to consists of all the pairs (a, b) where $a \in A$ and $b \in B$. Now, we show that if we have more two sets the order of forming products does not matter.

Exercise

1 For all sets A, B, C we have

 $(A \times B) \times C \cong (A \times B) \times C$

For this reason, we use $A \times B \times C$ to denote either sets.

Exercise

Show that two finite sets are isomorphic if and only if they have the same number of elements.

Exercise

Show that for any function $f: X \to Y$, we have

 $\mathbf{Gr}(f)\cong X$.

A remark on disjoint unions

We introduced the operation of taking disjoint union of two sets as follows:

 $A \sqcup B = \{ inl(x) \mid x \in A \} \cup \{ inr(x) \mid x \in B \}$

Exercise

Show that

$$\textit{A} \sqcup \textit{B} \cong (\{0\} \times \textit{A}) \cup (\{1\} \times \textit{B})$$

Inspired by this fact we define the disjoint union of a family $\{A_i \mid i \in I\}$ of sets to be

$$\bigsqcup_{i\in I} A_i = \bigcup_{i\in I} \{i\} \times A_i.$$

An element of $\bigsqcup_{i \in I} A_i$ is a pair (*i*, *a*) where $i \in I$ and $a \in A_i$.

We can always define an inverse to a relation:

Definition

For a relation R on X and Y we define the inverse of R to be a relation R^{-1} on Y and X defined by

 $yR^{-1}x \Leftrightarrow xRy$

Exercise

Show that if a relation R is functional then it is not necessarily the case that R^{-1} is functional.

Arithmetic of sets

We define the operation of addition on sets as follows: For sets X and Y let the sum X + Y be defined by their disjoint union $X \sqcup Y$.

Exercise

- **1** Show that the addition operation on sets is both commutative and associative.
- Show that the empty set is the unit (aka neutral element) of addition of sets.

Exercise

Show that $\underline{m} + \underline{n} \cong \underline{m} + \underline{n}$ for all natural numbers m and n.

Exercise

1 Show that if S and S' are isomorphic, then for all sets X, we have $X + S \cong X + S'$.

2 Prove that for any singleton *S*, we have $\mathbb{N} + S \cong \mathbb{N}$.

Sometimes, when the context precludes risk of confusion, we use the notation 1 for any singleton set. Therefore, we can simplify the last statement in above to

 $\mathbb{N} + 1 \cong \mathbb{N}.$

Definition

- A retract (aka left inverse) of function f: A → B is a morphism r: B → A such that r ∘ f = id_A. In this case we also say A is a retract of B.
- A section (aka right inverse) of function f: A → B is a morphism
 s: B → A such that f ∘ s = id_B.

Example

- The circle is a retract of punctured disk.
- The maps from the infinite helix to the circle has a section, but no continuous section.

Injections

Definition

A function $f: X \rightarrow Y$ is injective (or one-to-one) if

$$\forall a, b \in X (f(a) = f(b) \Rightarrow a = b)$$

An injective function is said to be an injection.

Surjections

Definition

A function $f: X \rightarrow Y$ is surjective (aka onto) if

$$\forall y \in Y, \ \exists x \in X, \ f(x) = y$$

holds. A surjective function is said to be a surjection.

Proposition

- **1** A function with a retract is injective.
- **2** A function with a section is surjective.

Injection and retracts

Does every injection have a retract?

Injection and retracts

No. Consider the function $\emptyset \to \mathbf{1}$.

Proposition

Let $f : X \to Y$ be a function. If f is injective and X is inhabited, then f has a retract.

Injection and retracts

Proof.

Suppose that *f* is injective and *X* is inhabited. Since *X* is inhabited, we get always fix an element of it, say $x_0 \in X$. Now, define $r: Y \to X$ as follows.

$$r(y) = \begin{cases} x & \text{if } y = f(x) \text{ for some } x \in X \\ x_0 & \text{otherwise} \end{cases}$$

Note that *r* is well-defined since if for some *y*, the there are elements *x* and x' such that y = f(x) = f(x'), then, by injectivity of *f*, we have x = x', and therefore, the value of *r* is uniquely determined.

To see that *r* is a retract of *f*, let $x \in X$. Letting y = f(x), we see that *y* falls into the first case in the specification of *r*, so that r(f(x)) = g(y) = a for some $a \in X$ for which y = f(a). But, f(x) = y = f(a), and by injectivity of *f* we have x = a. Therefore, for every $x \in X$,

Injection and retracts

Was this proof constructive?

Questions

Time for your questions!